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Abstract

The stochastic engine uses modern computational capabilities to combine simulations with observations.
We integrate the general knowledge represented by models with specific knowledge represented by data,
using Bayesian inferencing and a highly efficient staged Metropolis-type search algorithm. From this, we
obtain a probability distribution characterizing the likely configurations of the system consistent with
existing data. The primary use will be optimizing knowledge about the configuration of a system for
which sufficient direct observations cannot be made. Programmatic applications include underground
systems ranging from environmental contamination to military bunkers, optimization of complex non-
linear systems, and timely decision-making for complex, hostile environments such as battlefields or the
detection of secret facilities.

We create a stochastic “base representation” of system configurations (states) from which the values of
measurable parameters can be calculated using forward simulators. Comparison of these predictions to
actual measurements drives embedded Bayesian inferencing, updating the distributions of states in the
base representation using the Metropolis method. Unlike inversion methods that generate a single best-
case deterministic solution, this method produces all the likely solutions, weighted by their likelihoods.
This flexible method is best applied to highly non-linear, multi-dimensional problems.

Staging of the Metropolis searches permits us to run the simplest model systems, such as lithology
estimators, at the lower stages. The majority of possible configurations are thus eliminated from further
consideration by more complex simulators, such as flow and transport models. Because the method is
fully automated, large data sets of a variety of types can be used to refine the system configurations. The
most important prerequisites for optimal use of this method are well-characterized forward simulators,
realistic base representations, and most importantly an ability to obtain disparate data sets that are directly
affected by the system configuration. Our initial earth-sciences application uses models for lithology,
flow and transport, geochemistry, and geophysical imaging; the system configuration (base
representation) being refined is the rock type at each underground location.

In the initial stages of this initiative we demonstrated a two-stage analysis of synthetic Electrical
Resistance Tomography (ERT) data and hydraulic flow information (Newmark et al., 2002). We used
these results to develop algorithms that improve efficiency of the Metropolis search and provide accurate
diagnostic evaluation during the search. Using actual data from a highly contaminated A/M outfall and
solvent tank storage areas at the Savannah River Site (SRS), we used the stochastic engine to resolve
lithology using ERT data. SRS will use these methods in their design and implementation of steam
cleanup of the largest trichloroethylene (TCE) source in the Department of Energy (DOE) complex. We
have implemented “soft conditioning” algorithms that allow us to use a variety of data types to control the
initial representations, and most importantly, to use the final distribution resulting from one stochastic
engine analysis as the initial distribution for a subsequent analysis. We have created a web-based interface
that will allow collaborators like SRS to enter data and observe results of calculations on Lawrence
Livermore National Laboratory (LLNL) supercomputers in an interactive mode. All engine functions
operate in three dimensions, and a parallel implementation on Linux cluster machines is in initial testing.
The method will be extended to include active process analysis, in which an ongoing data stream is used
to continuously update the understanding of the system configuration. Applications to other types of state
spaces, such as chemical parameters in a reacting system or atmospheric plume movement, are being
evaluated.
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Introduction

The fundamental problem in earth sciences is to determine the properties of an object that we
cannot directly observe. This problem is common to numerous other areas of investigation. We
use inference and models to extrapolate or interpolate our knowledge, but we are fundamentally
limited by the inability to inquire over the entire spatial or temporal domain of interest. The
purpose of the Stochastic Engine Initiative is to attack this problem by developing a method to
simultaneously use many kinds of data to refine our understanding of complex geologic systems.
We focus on improving one “base” set of data (or representation of the system), from which
other parameters of interest can be calculated using process models. The lithology (the general
physical characteristics of a rock) of an underground system is the base representation for
geological systems. It provides a ready means to predict the behavior of the system under forcing
events such as injection of a fluid; when we know the lithology more accurately, we can predict
the behavior of the system more accurately. The response of the system to these forcing events
can then be measured to further improve the knowledge of the system. This feedback is central to
our ability to acquire enough knowledge about complicated systems; we need to utilize each
layer of knowledge to improve our acquisition of new data, continuously improving the detail
and accuracy of our system knowledge. The stochastic engine is designed to incorporate
everything from the geologists’ first field observations to the millions of measurements made
during a field operation such as a steam remediation project, into an integrated and continuously
improving understanding of the base representation. While our first application is geologic, this
method is broadly applicable to any topical area in which direct observations of a system can be
combined with general understanding represented by simulation.

Technology of this kind is needed by all large-scale subsurface efforts. The most obvious, such
as oil recovery, are those in which the cost of additional wells is very large and the goal is to
maximize recovery per dollar invested. In government applications such as nuclear waste
disposal or environmental remediation, a more immediate goal is often the reduction of
uncertainty in the outcome of costly or long-term efforts. These data-rich applications are in
contrast to data-poor situations, such as locating underground structures. In all cases the
stochastic engine can improve the value of existing data, and guide the acquisition of future data
through quantitative evaluation of method, location, and number of points. Because geologic
investigations proceed on a time scale of days to years, the stochastic engine can serve as a real-
time analysis tool, updating the global understanding of the system parameters as each new item
is acquired. We are working with partners in the Department of Energy (Savannah River Site),
the Department of Defense (Navy—ESTCP program) and the Environmental Protection Agency
to apply the stochastic engine to major environmental cleanup efforts. These data-rich systems
are desperately in need of a method to unify all data types, and provide real measures of
uncertainty to guide decisions.

How can we understand a system that is too complex to sample or
impossible to observe directly, but for which we have good models

 that will predict behavior under specific conditions?

Such systems are a large part of our LLNL mission. They include not only existing underground
systems, but also problems in the future such as nuclear waste disposal systems; complex or



4

hostile environments on battle fields or in secret facilities; and problems in which short response
times preclude fielding additional equipment to more fully characterize the situation. The
stochastic engine addresses these problems by integrating the general knowledge represented by
models with specific knowledge represented by data. Its development constitutes a technological
leap in the integration of simulation and data.

The stochastic engine honors all data and model information to produce probability distributions
identifying likely system configurations or behavior, and quantifying the potential improvement
provided by new data. Even when conventional inversion and analysis methods are able to
address complex problems, they provide only a single “best” answer, throwing away much of the
information and precluding other likely possibilities. This hinders the subsequent use of the
analysis by failing to allow for alternative possible outcomes.

For instance, waste package engineers for the Yucca Mountain Program (YMP) do not want to
know a single water chemistry that can contact a package, but rather: the range of chemistries;
the likelihoods of those chemistries; and where they are expected to occur. The stochastic engine
will answer this kind of question. The optimal application will be in projects where good
simulators exist but data are incomplete or complex. This includes many earth science problems
as well as intelligence gathering and tomographic imaging. Most importantly, the stochastic
engine allows continuous integration of new data into the analysis, improving understanding and
reducing uncertainty in the areas where it is most valuable. The stochastic engine is intended to
be an integral part of long-term programs. This is a radically new approach to understanding and
predicting complex systems.

Approach

The stochastic engine uses existing simulators to predict data values that are then compared to
exactly analogous measurements to determine which possible configurations of a system are in
fact closest to the real condition. An extremely efficient search algorithm, derived from the
Metropolis/Hastings method, is used to determine which states to test. Different types of data
(and their accompanying simulation) can be combined in stages, so that extremely complex state
spaces can be searched quickly. The initial state space is described by a mathematical model
called the base representation that includes all the salient features of the system, while being as
simple as possible. This constitutes the “prior” distribution in the Bayesian inferencing scheme.
The results of the engine analysis are in terms of these same states; the “posterior” distribution
resulting from the analysis is the set of states that are consistent with the data and inherent error
in the system.

The simulators used are all forward models, that is, they predict a value given an initial
condition; these can be used with extremely non-linear problems which are difficult or
impossible to directly invert. Modern computational power makes this reasonable for
complicated problems, but the search algorithm has proven to be so efficient that many problems
of geologic interest are tractable on workstations alone. The wide range of applicable problems is
a function of the number of good models (simulators) that exist today. The stochastic engine
methodology can use any model that predicts results based on initial conditions. Initial
development focuses on earth-sciences models for lithology, flow and transport, geochemistry,
and geophysical imaging.
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Contributing data can be of many types, ranging from distinct physical or chemical
measurements for which sensitivity, resolution, etc., are known, to “soft” data such as expert
inference or qualitative models. The experimental methods used include multiple simultaneous
imaging methods and “active” analyses such as pump tests or deformation tests that force
changes in the system that are predictable if the internal structure is known. The resulting
analysis is unique both in the simultaneous use of multiple data types (for instance x-ray
tomography and positron emission tomography) and in the calculation of the structure directly in
terms of probabilities. Rather than a single “best” structure, the stochastic engine generates a
range of plausible structures and the corresponding probabilities that they are correct. This
facilitates decision analysis and needs-based experimental planning.

We are focusing on geological/ geophysical systems for which extensive observations can be
made on time scales shorter than the characteristic scale for the problem, enabling predictive
understanding to evolve much faster than the real-time evolution of the natural system. These
include remediation of groundwater, atmospheric transport, and characterization of natural
environments. We have good process models and statistical means of describing initial
conditions in systems involved in environmental management, nuclear waste, and carbon
management, and in other natural systems where complexity hinders prediction of future
outcomes.

The stochastic engine has been tested on two sets of real data from the Savannah River Site
(SRS). All engine functions operate in three dimensions, and testing on cluster machines has
begun. A web-based user interface allows remote users (such as our collaborators at SRS) to run
the engine on our LLNL machines, with full interactivity.

The application of the stochastic engine for national security issues involving large amounts of
uncertain data was an obvious extension, and the events of September 11 2001 encouraged us to
accelerate that phase of development. Applications in intelligence and defense areas include
sampling strategies and evaluation of facilities involved in weapons of mass destruction, imaging
and non-destructive evaluation of complex assemblies, measuring structural response to
deformation forces, and locating the source of atmospheric plumes.

Work in Progress

This report describes the state of development of the Stochastic Engine Initiative at the halfway
point of an expected three-year effort.  An initial description of the project was given by
Newmark et al. (2002), including future development efforts that are part of our current plan.
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The Stochastic Engine

Overview
One of the fundamental theorems of conditional probability is known as Bayes theorem. The
result relates the probability of one event given the occurrence of another (e.g.; A given B
occurred), to the inverse conditional probability (e.g.; B given A has occurred) as follows:

P B A
P B P A B

P A
( ) =

( ) ( )
( )

The probability of B given A has occurred, denoted P B A( ), is called the posterior probability,
while P B( ) alone is the prior probability of event B. One manifestation of this theorem has B as
a hypothesis being tested and A as an observation pertinent to that hypothesis. Hence, Bayes
theorem allows one to revise the initial probability of a hypothesis ( P B( )) by incorporating
observed data (A) to produce an updated (and more accurate in light of the new data) probability
of the hypothesis given the observed data ( P B A( )).

For the current approach, Bayes theorem will allow us to model our unknown parameters as
random quantities with corresponding probability distributions defined on the space of possible
parameter values. This representation of the unknown parameters as random quantities rather
than fixed unknown values is a critical distinction between our approach and prior efforts in the
earth sciences.

The actual connection of a hypothesis to an observation is made via a forward model: for a
possible subsurface configuration the forward model predicts the values that would be observed
by actual measurement. These are compared to real data. The degree of match between the real
and predicted data is fed back to a Markov Chain Monte Carlo (MCMC) algorithm that samples
candidate lithologic configurations for testing. Accepted states constitute samples from the
posterior distribution and provide the basis for subsequent inference. By staging these
comparisons in a series of MCMC algorithms, we can identify probable configurations using fast
models early in the process. The most computationally intensive models are only used at later
stages on configurations that are already known to be consistent with data used at earlier stages
(Figure 1).

Configurations that pass all the stages are possible true configurations of the system. It is usually
the case that the MCMC approach produces a reduction in the number of possible configurations
(represented in the prior distribution) by many orders of magnitude. The approach also provides
a seamless methodology for combining observational data with our forward models to produce
state estimates and corresponding uncertainties that are not readily available through
conventional inversion approaches. This is an extremely powerful method for incorporating
previously known information and newly acquired observations into an estimate of the
probability distribution of the states of the system. By generating likelihoods of actual
lithologies, we can readily involve a variety of data types in the inference process and use the
obtained lithologic posterior distribution to guide further investigations. By combining
configurations into meta-classes (configurations that are so similar as to behave identically in the
field, within error) we can readily deduce whether there is more than one highly probable
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configuration for our system, and which data will be the most useful in resolving between
competing configurations.

The MCMC staged algorithm is well suited to a number of improvements that we anticipate will
be crucial to dealing with complex, three-dimensional problems:

• Any number of stages can be used, involving all the data available for the system.
• Initial constraints placed on the base model confine the analysis to solutions that are

known to be physically realistic, speeding the search and enhancing the usefulness of the
answer.

• Data can be added to the algorithm sequentially, as it becomes available.
• The algorithm can be stopped when all available information has been processed, and the

newly obtained distribution of the possible configurations can then be the basis for
processing new data in a subsequent staged MCMC algorithm.

• Resolution in the base model can vary across the state space, allowing focus on critical
areas. Individual spatial volumes can be analyzed by their own stages, and the result
collapsed to a single probability distribution (as described above).

• Additional parameters can be added to the analysis by mapping them onto the lithologic
representation. For instance, the presence of contaminant can be added as a representation
element and a series of stages for chemical data types can be incorporated into the
simulation to resolve the location of the contaminant.

Individual States 
(Configurations)

Likelihood

Base Representation
Model (possible
configurations)

Fast
Forward Model
e.g. ERT

Predicted
Data
Values

Observed
Data e.g.
Voltages at
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Generate Test Configuration

MCMC Bayesian
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Accept Reject
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Figure 1.  The MCMC Stochastic Engine combines observations and simulations to determine the
likelihoods of possible system configurations.
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We believe that this approach represents a true breakthrough in dealing with the combinatorial
avalanche that has limited true statistical analysis in the earth sciences. The ability to stage the
MCMC analysis and rapidly winnow the searched states makes it possible for the stochastic
engine to evaluate complex problems on large scales using complex models.

Our goals are feasible but challenging. In order to maximize our progress and the usability of the
end product, it is important to deal with tractable applications. Those will be problems in which:
we have familiarity with the lithologic properties (alluvial soil systems); a rich variety of
disparate data exists (a thoroughly monitored steam injection system); chances to reiterate the
analysis of the system occur (common in multiple injections conducted for creosote sites); and in
which there is good engineering control of the system. These give us a well-poised problem with
defensible priors and well-described data for the updating process. We anticipate that for a large
site like the Savannah River steam injection site, the initial application phases would require
cluster level computational resources. As the approach is refined and the underground system
better understood, the forward computational aspects could be transferred to more commonly
available resources such as those used to run NUFT simulations today.

Mathematical Basis

This tool is undergoing continuing revision and improvement. The major components and their
functions are:

Markov Chain Monte Carlo—The Markov Chain Monte Carlo (MCMC) methodology
provides a flexible framework that can be adapted to perform a variety of analyses and inference
tasks. It uses a Markov chain state/transition structure to control the sampling process. MCMC
techniques enable sampling from a posterior distribution by representing it as the stationary
distribution of a Markov chain, which is simulated until the chain achieves equilibrium. At that
point the chain is generating a sequence of samples from the posterior (i.e., target) distribution.
For Bayesian analysis, we are able to adopt the approach to simulate and estimate posterior
distributions that embody our available prior information (e.g., historical data and
phenomenology models) and newly acquired observational data. MCMC algorithms can assume
a variety of forms with the most useful to us being the Metropolis framework.

Metropolis Algorithm—The basic stochastic engine approach is a derivative of the Metropolis
algorithm (Metropolis et. al., 1953) described by Mosegaard and Tarantola (1995). This
particular MCMC algorithm has demonstrated potential in solving inverse problems involving
complex physical systems and supports several key enhancements necessary to mitigate the
combinatorial demands underlying the MCMC methodology. For this framework, the solution to
an inverse problem is an estimate of the posterior probability distribution defined on the
corresponding space S  of possible solutions. In other words, for any potential solution s S0 ∈ ,
the stochastic engine will provide an estimate of the probability and confidence that s0  is indeed
the true solution to the given system. This allows future analysis to focus upon the most likely
explanations of system behavior—thereby improving both the efficiency and effectiveness of
follow-on efforts. Moreover, since the Mosegaard and Tarantola’s formulation directly
implements Bayesian analysis, results generated by the stochastic engine (i.e., the estimated
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posterior distribution, predictions, hypothesis testing, model comparison, etc.) may be
incrementally updated as more data become available over time.

The inverse problem under consideration may be described as follows. Let D  and M  denote the
data space and model space respectively, and suppose that there exists a mapping G  such that:

d G m= ( )

where m M∈  is a parameter vector describing the system of interest and d D∈  is a vector of
measurements taken on that system. The inverse problem occurs when a vector of data values is
observed, say d 0 , and we want to determine the value of the parameter vector m0  that gave rise
to d 0 . Usually this problem is so poorly constrained (i.e. under determined) and highly nonlinear
that the specification of a deterministic solution for m0  that is unique and possesses a high
degree of confidence is virtually impossible. In these types of situations, a probabilistic solution
to the inverse problem is generally superior to any classical deterministic optimization approach.

The Mosegaard and Tarantola version of the Metropolis algorithm produces a sequence of
samples from the space of possible solutions M  where the samples are generated at rates
proportional to their posterior probabilities. The models generated most frequently are consistent
with both our prior information on M  and the observations being processed. In the long run, the
posterior distribution can be estimated from the generated sample frequencies. Since the
information used to drive the simulation is taken from two distinct sources (prior information and
observational data) the sampling process can be viewed as consisting of two distinct components.
The first component generates samples according to the a-priori distribution ρ( )m  on model
space (these samples are called “proposal” samples and are possible solutions to the inverse
problem). In the algorithm, this sampling process is manifested as a random walk through the
state space M . The states of the random walk are the members of M  and the one-step transition
probabilities are designed to produce a long-run stationary distribution equal to ρ( )m . The
second component takes the form of a decision process that either accepts or rejects the proposal
sample generated from the a-priori random walk. This decision is based upon the likelihood that
the proposed solution could have produced the observed data. Specifically, suppose that the
current state of the random walk is mi  and that a randomized rule based upon the one-step
transition probabilities propose a move to state m j . If these transitions were always accepted,

then the simulation would be sampling from the prior distribution. But, instead suppose that the
proposal transition is only accepted according to the following rules:

• 1) For both the current and proposal states mi  and m j , compute the respective likelihoods

L mi( ) and L m j( ) that these models produced the observed data. (Note: These likelihood

functions essentially measure the degree of fit between the observed data and the
corresponding data predicted by the model.)

• 2) If L m L mj i( ) ( )≥ , then accept the proposed transition with probability 1 and move the

random walk to state m j . (Note: The algorithm always accepts the transition when the

new state provides a better explanation of the data than the current state.)
• 3) If L m L mj i( ) ( )< , then use a randomized decision rule and accept the proposed

transition with probability L m L mj i( ) ( ) and move the random walk to state m j .
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Otherwise, transition back to state mi . (Note: By allowing the random walk to transition
to a less likely state, the process can move out of a local extrema.)

We have demonstrated that the samples generated through this three-step process will have a
limiting distribution that is proportional to the desired posterior distribution ρ m d 0( ) .

There are a variety of issues that must be addressed during the implementation of this
methodology. The most fundamental concern is that the proposal random walk must be designed
so that a limiting stationary distribution actually exists and the overall process converges. For
this to happen, the transition probabilities must be defined so that the process is ergodic—in
other words, it must be aperiodic and irreducible. Once we are guaranteed the simulation
converges, the critical issue becomes convergence rate. Key factors affecting the convergence
rate include: (i) the strength and quality of the prior distribution ρ( )m , (ii) the representation,
resolution and dimensionality of the state space M , and (iii) the computation of the likelihood
function for any given state of interest.

In general, the prior’s impact on convergence originates from its control over which of the
neighboring states will be proposed as the next state for the process to occupy. Once a proposal
state is selected, the sensitivity of the likelihood function influences the proposal acceptance rate
and in turn the overall convergence rate. Hence, both the prior distribution and likelihood effect
how well the process mixes (i.e. samples) the support of the posterior distribution. This is
arguably the most critical function in the MCMC paradigm since the more rapidly the process
mixes, the more rapidly it will converge to ρ m d 0( ) .

Base Representation—The representation of the state space (i.e. defining the individual states,
the neighborhood structure, and the transition probabilities) is critical to the overall effectiveness
of the simulation. In those cases where traversal of the state space is expensive and/or time
intensive (e.g., computationally intensive forward models), the proportion of states occupying
the bulk of the distribution must be kept to a minimum; this is the key tenet of the stochastic
engine method. For the underground transport problem, the lithology model (generated by the
TSIM code) used to generate our proposal samples is extremely efficient in this respect. We use
a geostatistical model to generate the “prior” spatial distribution of physical properties
(resistivity, permeability, etc.) for each iteration in the MCMC. Given that resistivity and
permeability depend on lithology or facies (rock categories with distinctive characteristics), we
have employed a categorical geostatistical simulation approach. The state space is defined to
consist of those combinations of voxel-level lithologic labels that are consistent with our prior
spatial distribution. The main advantages of this approach are: (1) data are often categorical (e.g.
lithologic descriptions), (2) geologic insight on the spatial characteristics of geologic systems
(e.g., facies models) can be exploited, and (3) a very large proportion of the information known
about the system can be represented very compactly using only a few lithologic categories.

Resolution is critical; if the resolution is too fine or involves a high dimensional state vector, the
convergence may be slowed beyond practical limits. If the resolution is too coarse, then the
simulation results may prove too diffuse to serve as a basis for inference. An approach we will
implement in the final year for resolving the most complex systems is to adopt a multi-resolution
method. Such an approach involves examining the state space hierarchically across a variety of
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levels of resolution. Another method for managing state cardinality is to employ meta-states that
serve as pseudo-equivalence classes, which map highly similar states into single representative
entities. We are evaluating several approaches designed to define and “bin” the meta-classes that
take into account the spatial characteristics of the states.

Staged MCMC—The likelihood function computations required of all proposed state transitions
present another serious operational obstacle when computationally intensive forward models are
involved. This follows from that fact that a likelihood L m( ) is essentially a probabilistic measure
of the fit between the predicted data based upon model m  and the corresponding observational
data. Hence, nontrivial likelihood computations will require the generation of predictions via
some forward model. To mitigate this problem, we implemented an innovative method that
effectively reduces the number of forward model runs. It is called the “cascade” or “staging” rule
and is applicable when we have observational data of differing types like lithology, ERT and
flow. In these cases, the errors in prediction are often independent and hence the total likelihood
expression factors into distinct terms – one for each data type. Hence, for the above example the
total likelihood expression factors as follows,

L m L m L m L mtotal lith ERT flow( ) ( ) ( ) ( )= ∗ ∗

This probabilistic structure can be leveraged to streamline the transition process employed by our
algorithm. Specifically, we have proven that performing a single Metropolis transition step (the 3
step method listed above) that uses the entire likelihood expression L mtotal ( ) is equivalent to
performing a sequence of Metropolis steps – one for each term in the above expression. This
staging form of our algorithm allows the processing order of the likelihood terms to be arranged
according to increasing runtime complexity of the corresponding forward model. Hence, once a
model is proposed by the prior distribution, the forward model is solved initially for the first data
type alone (step 1). At this juncture, the proposed model may be rejected or accepted (steps 2 and
3). If the decision is to reject the proposal, then the forward models for the other data sets are not
executed. The prior distribution simply proposes a new state and the decision process begins
anew with the first data type. If the decision at this stage is to accept the proposal, the next data
set is considered, its corresponding forward model is run and a decision to accept or reject is
made based upon its likelihood. This continues through all of the different types of data until the
proposal either is accepted at all stages or is rejected at one stage and starts over at the beginning
of the sequence.

Development of the Engine Software
The stochastic engine system consists of six major software components: (1) the web interface,
(2) the engine driver, (3) the stochastic search algorithm, (4) the data analyzer, (5) the proposal
sampler suite, and (6) the forward model suite.

Stochastic Engine User Interface

The stochastic engine has, at present, two user interfaces. The first is a CLI (Command Line
Interface) based on the Python language interpreter and a set of user-modifiable Python classes.
The interpreter and classes combine to allow a user to specify all relevant settings. Such settings
include forward models, grids, lithology data, and output files. The Python classes give users
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access deep into the internal workings of the stochastic engine, important for development
efforts.

The second user interface is a Web-based interface (Figure 2) with the working name of WISE
(Web Interface for the Stochastic Engine). WISE is a first effort at allowing off-site access to the
Stochastic Engine while keeping the Stochastic Engine itself on-site. Requirements for this
interface:

• It must run on a wide variety of computer platforms.
• It must shield the user as much as possible from the stochastic engine’s underlying

programming structure and file formats.
• It must be a GUI (Graphical User Interface), at least to the point of using forms-based

input and providing access to graphical output.
• It must require the user to log in to his or her personal account.

The ubiquitous presence of Web browsers on Internet-connected computers made a Web-based
interface a good solution.

WISE supplies each remote user with a customized interface. It allows users to define and edit
models, initiate and monitor runs, and manage their own input and output files. WISE filters their
access to the stochastic engine. The next stage of WISE and the I/O portions of the stochastic
engine will jointly:

• Create a database to provide additional user services and improved software
communications. The database may be written to or queried by WISE, the stochastic
engine, and other programs such as post processors or system monitors.

Figure 2.  Screen images of the web-based interface. The display updates dynamically as the
analysis proceeds, providing similar user feedback to the command-line interface.
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• Add interfaces to additional forward models.
• Add methods to preview data files and post process output files.
• Use XML (eXtensible Markup Language) for structuring configuration files and data

files, thus allowing the files to be more easily used for a variety of purposes and by a
variety of programs.

Any distributed processing, where other computers on the network do all or part of the modeling
work, will be managed by the stochastic engine. The user interfaces will only need to interact
with the part of the stochastic engine that runs on the local machine. The database mentioned
above will eliminate the need for the user interfaces to deal directly with the distributed
machines.

The Engine Driver

The stochastic engine driver orchestrates the overall execution of the stochastic engine. It reads
the user input, manages interprocess communication for running multiple processes on different
machines, such as those in workstation clusters, and manages the postprocessing of output data,
such as convergence monitoring and graphics. The following is a list of current and planned
capabilities.

• Calls the appropriate stochastic search algorithm
• Drives the proposal sampler from the proposal sampler suite
• Manages the execution of the appropriate data analyzer component
• Drives forward models from the forward model suite locally or across the network (using

Unix fork, telnet, socket servers, message passing)
• Runs independent chains on separate processors
• Passes input and output data between processors (using ftp, sockets, and message passing

protocols)
• Performs communication with the WISE web interface
• Does scheduling of remote jobs

Note that the application of the engine to a new problem requires integrating a proposal sampler
and a set of forward models into the engine. This task is made straightforward through the use of
the Python programming language and object-oriented methodology (Figure 3).

We have the capability to run independent chains on different processors in local workstation
clusters and the ability to manage parallel jobs spun off by forward models. These capabilities
are at a prototype stage and further development will be required in order to run on a large
variety of machines. Graphics can be performed on the user’s workstation, as opposed to the
remote machine, to eliminate bottlenecks in data transfer. Background rendering can be done on
remote machines.

In the future, management of remote jobs will be enhanced by a smart scheduler that will send
jobs to a variety of non-local platforms (e.g., Teracluster, ASCII machine) depending on
necessary CPU and memory resources required. The need to manage the resulting datastream
will also need to be addressed. Two-way communication between the driver and the web
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interface will be implemented to allow the user to interrogate the progress of the stochastic
simulation.

Stochastic Search Algorithm

The stochastic search algorithm rejects or accepts realizations generated by the proposal sampler
according to a probabilistic rule. The following algorithms have been implemented or are
planned.

• Single-stage Metropolis and Mosegaard algorithms
• Multiple-stage Metropolis and Mosegaard algorithms
• Nitao-Hanley averaging algorithm
• Multiresolution algorithms
• Adaptive algorithms

The Nitao-Hanley averaging algorithm (Nitao and Hanley, 2001a,b) and several adaptive
algorithms were developed to accelerate convergence. These algorithms as well as
multiresolution algorithms will be implemented into the engine and tested.

The Data Analyzer

Real-time postprocessing of the engine output and its graphical representation is needed for
monitoring the convergence of the simulation and for analyzing the statistical results. The
sequence of realizations resulting from an engine simulation may also be saved for off-line
postprocessing. The data analyzer:

• Performs on-line 2D and 3D graphics (using the Plotutils and VTK visualization
libraries)

Base 
Representation

Sampler

Data

Forward Model

Likelihood
Function

MCMC Algorithm
Accepted

 States

Posterior
Probability

Prior Probability

Existing understanding and
codes

New Python elements of the
stochastic element code

Figure 3.  All stochastic engine applications share a number of software components. Existing codes are
incorporated with a minimum of effort.
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• Computes on-line convergence diagnostics
— 2D convergence diagnostics for geological systems
— 3D convergence diagnostics for geological systems
— Convergence diagnostics for parameters characterizing chemical systems
— Convergence diagnostics for parameters characterizing atmospheric transport

• Conducts metastate and clustering analysis

Three-dimensional graphical visualization is incorporated into the engine through an interface
with the VTK visualization library. Jobs are spawned on the user’s workstation to avoid graphics
being a bottleneck to the progress of the simulation. Convergence diagnostics for 3D geological
problems are being tested. Convergence diagnostics for new applications such as chemical and
atmospheric systems will be implemented, and new visualization options will be added.

The Proposal Sampler Suite

The proposal sampler suite is comprised of a set of application-specific programs, whose purpose
is to generate random realizations obeying a specified prior probability distribution. The
stochastic MCMC search algorithm uses the generated realizations. The programs may already
exist written in some other language such as Fortran or C++ and executed as processes spawned
by the engine driver, or they can be implemented as Python modules. Current and planned
proposal samplers are:

• TSIM geological lithology generator (Fortran program)
• Spectral lithology generator (Python module)
• Subsurface object location generator (Python module)
• Geochemical reaction parameter generator (Python module)
• Chem-bio process plant realization generator
• Atmospheric source generator

The Forward Model Suite

For a given application, the MCMC algorithm requires a forward model for each common set of
data measurements. The purpose of a forward model is to take a realization generated by the
proposal sampler and compute the prediction of the measurement. The MCMC algorithm then
compares the predicted data measurement with the actual measurement in order to decide
whether to accept the realization. Current and planned forward models are:

• OC4 2D Electrical Resistivity Tomography (ERT) model (Fortran program)
• Multibh 3D ERT model (Fortran program)
• NUFT well test model (C++ program)
• NUFT geochemical reactive transport model
• NUFT tracer model
• ASPEN chem-bio process plant model
• ARAC atmospheric transport models

Finer-grained parallelization of forward models may be required, depending on the size of the
problem.
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General Understanding

Example: Blob Problem

In order to have a test problem for imaging applications with a state space structure that is
readily diagnosed, we developed the “Blob” problem (Figure 4). A target of fixed size and
properties is assumed to exist in a homogeneous matrix. The engine’s job is to locate the target;
uncertainty arises from the inherent error and non-uniqueness in the measurements. The
relationship of the base representation (a series of proposed locations for the target) and the
posterior distribution is straightforward for this problem; the posterior is the weighted sum of all
the accepted locations of the target.

Comparison of MCMC and
Deterministic Approaches

The electrical resistance
tomography (ERT) inverse
problem can be solved using
stochastic or deterministic
approaches. Both approaches have
to contend with the highly non-
linear relationship between the
measured resistance values and the
resistivity of a region. Also, both
approaches face the problem of
electrical equivalence (also
referred to as non-uniqueness: the
measured values represent equally
well an infinite number of
resistivity models). In general, the
stochastic engine solution will
require substantially longer
computing times but offers the
capability of jointly inverting
orthogonal data sets thereby
improving the fidelity of the result.
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Figure 4.  The blob problem assumes a fixed-shape object
exists in a homogeneous matrix.
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The deterministic inverse approach seeks to find a
unique, robust solution to the inverse problem. Direct
linear inversion is not possible because it only applies
to linear problems and the ERT problem is generally
underdetermined. The inverse algorithm uses a
smoothness-constrained, least squares, iterative
approach that searches for a single model that fits the
data within a specified tolerance. Using this approach
it is possible to obtain meaningful “smoothed”
parameter models even when the problem is
underdetermined. Also, this approach results in a
unique solution that is relatively insensitive to the
starting model assumed by the inversion process.

We have used the blob problem to compare the
attributes of the stochastic engine and deterministic
ERT approaches. The target considered consists of a
mass (10 ohm-m) embedded in homogeneous
background (1 ohm-m).

A comparison of the stochastic and deterministic
tomographs is shown in Figure 5. The column of
images on the left of the figure shows the
deterministic tomographs obtained for a variety of
target positions. The location of the target is shown by
the black rectangle and the dashed vertical lines
indicate the locations of the electrode arrays. The
column of images on the right show the corresponding
stochastic tomographs; these show the posterior
probability distribution produced by the stochastic
engine.

A comparison of the images in Figure 5 suggests that
both approaches do a reasonable job of mapping the
gross target location. The deterministic tomographs
show a map of the electrical resistivity of the system;
the highest resistivity values indicate the target
location. The stochastic results show the probability
that the target is present at a given location; the
highest probabilities indicate the most likely target
locations.
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Figure 5.  Comparison of deterministic and
probabilistic (stochastic engine) solutions
to the blob problem.
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The most striking difference between the two approaches may be that the shapes and sizes of the
“truth” model are substantially more distorted in the deterministic tomographs. The distortion is
directly attributable to two factors:

(1) The smoothness constraint employed by the deterministic approach “smears” the resistivity
values between adjacent elements thereby producing models that have reduced contrast and
exaggerated extent.

(2) The size of the solution space is much smaller for the stochastic engine approach due to the
constraints on the stochastic search. The base sampler used by the stochastic engine only
considers models where the target location is variable but the size and contrast of the target
remain fixed. In other words, the base sampler takes advantage of prior knowledge regarding the
target’s size and shape. The MCMC inversion has fewer degrees of freedom, and this results in
better target resolution. Alternatively, the deterministic inversions have to discriminate between
many more models because target size and contrast are unconstrained; there is no way to
incorporate prior knowledge.

Because of the spatial nature of the blob problem state space, we can map the shape of the
likelihood surface, as in Figure 1. Transects of the likelihood surface are shown in Figure 6, for a
wider version of the blob problem. For the line through the center of the box (blue diamonds),
the surface is very steep near the actual location, showing that there is very little uncertainty
associated with finding the blob in this problem. If there were more than one blob in this
example, the stochastic engine result would be far superior to the deterministic inversion.
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Figure 6.  Likelihood values for the blob problem can be easily plotted as a function of blob
location. The Metropolis/Mosegaard search algorithm rapidly finds a singular maximum of
this sort: the interesting question is to accurately include error to establish a confidence
interval.
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Example: Savannah River A/M Area Imaging

The SRS Model and Base Representation

The Savannah River Site (SRS) is situated upon fluvio-deltaic (river and delta) deposits of
several hundred meters thickness. The hydrostratigraphy consists of a stacked sequence of
aquifers and aquitards related to ancient depositional environments. The aquifers predominantly
consist of sandy fluvial deposits, whereas the aquitards predominantly consist of clayey
overbank (flood) deposits. However, both the aquifers and aquitards consist of a complex three-
dimensional architecture of materials ranging from clay to gravel.

In our initial applications of the stochastic engine to SRS, we focused on the shallow subsurface
of a small subregion called the A-14 outfall, where a waste stream was historically discharged
into the unsaturated zone of a shallow aquifer. In this setting, contaminant fate is dictated by the
complex spatial distribution of the small proportion of clayey zones. We obtained lithologic and
geophysical logs, cone penetrometer data, and geologic cross-sections from nearby boreholes.
We compiled lithologic data from eight nearby boreholes, and also completed a preliminary
geostatistical analysis of the site, which was used to initiate our prior lithology model for the
stochastic engine.

The stochastic simulation code “TSIM” is used to generate base representations of lithology (the
prior). TSIM (Carle, 1996; Carle et al., 1998)  is the only geostatistical simulation code that
accurately honors the spatial variability model for multiple lithology problems. Figure 7 shows
three “realizations” generated by TSIM for the Savannah River Site application. The four colors
represent different lithological categories: gravel (red), sand (yellow), clayey sand (green), and
clay (blue). Each realization exhibits a similar pattern of spatial variability that is consistent with
borehole data and geologic descriptions of the site. TSIM honors “hard” data, such as lithologic
data at boreholes. In each realization, hard data are honored for the borehole on the right side
(indicated by the black line).

Figure 7.  Three realizations of the Savannah River Site generated by TSIM. Borehole data are
honored on the right side.
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Several important improvements have been made to TSIM for this initiative. Run time for TSIM
has been decreased by a factor of 10+. Four new capabilities have been added to TSIM:

• Realizations can be generated that are similar to previous realization, as required by the
MCMC algorithm.

• Using precalculated cokriging weights enhanced the efficiency of the program.
• Soft data, such as electrical resistivity logs, cone penetrometer data, or other forms of

indirect data, can be used to condition the realizations.
• Prior knowledge of “nonstationarity” of lithology proportions, e.g. information indicating

that a certain lithology is more likely to occur in a certain area, can be considered.

The ability to regulate similarity of realizations provides the “stepsize” control crucial to
implementation of the MCMC algorithm. The ability to use soft data opens many opportunities
for further conditioning of the realizations, considering that most geologic data are uncertain.
The ability to incorporate nonstationarity enables TSIM to integrate geophysical imaging and
geologic interpretations of localized variations in stratigraphy as prior information. Moreover,
the nonstationarity capability enables the use of previous stochastic engine runs as prior
information encapsulated by probability maps.

TSIM generates stochastic simulations by a two-step process using the algorithms of “sequential
indicator simulation” (Deutsch and Journel, 1992) and “simulated quenching” (Carle, 1997). For
both steps, the model of spatial variability is a three-dimensional spatial Markov chain (Carle
and Fogg, 1997). In the sequential indicator simulation step, the algorithm visits each cell of the
realization along a random path and uses cokriging, a form of linear regression, to estimate the
probability that a particular lithology occurs at that cell. The factor of 10+ speed-ups has been
achieved by recognizing that solution weights to the cokriging equations are identical for the
same random path. By storing the cokriging solution weights from the first realization and
maintaining the same random path in subsequent realizations, probability estimates for
subsequent realizations involve only computation of weighted sums. Previously, the sequential
indicator simulation step required the bulk of the run time; now it is faster than the quenching
step.

The sequential indicator simulation step provides the “initial configuration” for the simulated
quenching step. Simulated quenching is the “zero-temperature” case of simulated annealing,
where perturbations that reduce the objective function are accepted with a probability of 1.0
(versus < 1.0 for simulated annealing). The simulated quenching step is implemented by visiting
cells along a random path and testing whether a change in lithology will reduce the objective
function, which measures the difference between the spatial variability of the realization and the
model.

The new capabilities listed above are implemented by modifying the cokriging linear systems of
equations, the cokriging estimate, and the frequency of visitation of cells for the simulated
quenching step. Figure 8 shows an example using soft data, which are located along the dashed
lines on each realization. The soft data tighten the probabilities that certain lithologies occur at
the soft data locations.
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Figure 9 shows an example using a stepsize of 0.5 to create a series of realizations where the new
realization is similar to the previous realization. The similarity is controlled by the stepsize,
where 0.0 exactly reproduces the previous realization, and 1.0 has no effect.

Figure 10 shows an example where nonstationarity of lithology proportions is considered. The
top half of the realizations assume proportions of gravel = 0.011, sand = 0.930, clayey sand =
0.056, and clay = 0.003; the bottom half assumes proportions of gravel = 0.000, sand = 0.541,
clayey sand = 0.256, and clay = 0.203.

The new capabilities added to TSIM have been essential to application of the stochastic engine to
“real world” subsurface problems. TSIM is now vastly superior to any geostatistical lithology
generator available today.

Figure 8.  Three realizations conditioned by both hard (solid line, at right) and soft (dashed lines, left and
middle) data.

Figure 9.  A series of three realizations where stepsize controls similarity of one realization to the next.
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ERT and Soft Conditioning from Cone Penetrometer Data

We have analyzed 2D ERT collected at the Savannah River Site A/M outfall area as part of an
ongoing DOE environmental characterization project. The purpose of this work is to demonstrate
the performance of the stochastic engine using real data from a site where improved data
interpretation methods can make a difference in remediation schedule and cost.

Results: Pixel-Wise Probabilities.  Figure 11 shows stochastic tomographs generated by the
stochastic engine. When working in lithology space, one way to visualize the summation of the
accepted states is in terms of the pixel-wise probability of each lithology type. The left image of
Figure 11 shows the posterior probabilities for the clay category (on a pixel by pixel basis)
produced by the lithology generator. The vertical white lines show the electrode array locations.
The lithologies on the right side of each image are “hard-conditioned” by lithology information
observed along a well (well location indicated by a dark, wide vertical line). This means that
wherever clay was observed along the well, the probability for clay at that location is 1.0.

Figure 10.  Example of nonstationarity, where different lithology proportions are given for the upper
and lower halves of the realizations.

Prior (Lithology Only) With ERT and Soft
Conditioning

With ERT  Data

Electrodes

Figure 11.  Probability of clay at any pixel in the SRS A/M basin.  (Left) The prior distribution
(before stochastic engine analysis).  (Middle) With ERT data included in the in analysis, layering
can be discerned near the electrodes.  (Right) Using additional data (electric logs) from the
electrode installation, clear layering is apparent.
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The left image in Figure 11 honors the global lithologic tendencies at SRS but does not use any
data collected locally near the electrode array location. This is the “prior” for this analysis; the
information conveyed by our lithologic knowledge alone. As a result, the tomographs are “flat”
near the electrode arrays, i.e., they show no evidence of distinct layering. This means that, far
away from the well on the right where we absolutely know the lithology, there is a very nearly
equal probability for a given layer to be located anywhere within the image. The information
provided to the MCMC algorithm is insufficient to position the layers in space. The middle
image shows the posterior probability calculated when the lithology sampler and the ERT data
are used together. This image honors the global lithologic tendencies as well as the ERT survey
data. The posterior distribution now shows evidence of layering, although not very clearly.
Interestingly, the ERT data indicates that there is less clay in the vicinity of the electrodes than is
generally present in this area.

The influence of soft conditioning and ERT data can be seen in the rightmost image of Figure 11
The right image shows the posterior probability calculated when the lithology generator, the ERT
data and the electrical well logs are used together. In this case, the electrical logs are used to
“soft-condition” the realizations (i.e., introduce a bias) along the electrode array locations. The
soft-conditioning forces the lithology generator to honor global lithology data and local lithology
inferences based on the electrical logs.

In order to facilitate the incorporation of soft data, we created a Bayesian predictive time series
statistical tool. This tool can be used to incorporate other data types in future problems. To
implement the soft conditioning methodology, lithologic probability distributions were estimated
at each pixel in the given resistivity well. This was accomplished by first building a collection of
Bayesian time series models which incorporate measured resistivity data (from electric borehole
logs) and general lithologic/resistivity correlative properties to generate class conditional
predictive distributions of resistivity. Then, for each pixel adjacent to the well, the likelihood of
its measured resistivity, conditional on each possible lithologic class, was computed using the
assembled time series models. These likelihoods were combined with the prior lithologic
distribution using Bayes’ Theorem to produce a posterior distribution of lithology at each pixel.
These posterior distributions constitute an updated probabilistic representation of our current
state of knowledge concerning the lithologic identity of each well pixel.

The rightmost image of Figure 11 image shows evidence of distinct clay layers. Note that the
probabilities have increased at distinct locations thereby pointing to likely presence of clay
layers. This type of information is crucial to understand the transport of subsurface contaminants
at SRS because the clay layers control transport behavior. The results in Figure 11 suggest that
the stochastic engine can be used successfully to image spatially complicated targets such as
heterogeneous layers in geologic environments.

The probability tomographs are the key product of the stochastic engine. They distill information
from various orthogonal data sets and from thousands of forward calculations thereby providing
an unprecedented wealth of data about the natural system. The probability tomographs are
particularly useful for decision-making because, in addition to spatial data, they indicate
probability distributions. As result, the tomographs can be used to infer multiple geologic
configurations with similar posterior probabilities. This is particularly useful in earth science
problems because most geologic data are uncertain.
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Adding Information: Using the Result to Start the Next Analysis.  The posterior probability plots
shown above record the pixel-wise probability of occurrence of a particular lithology. This is
useful for visualization of the results, but it can be used in a much more powerful fashion. By
using the new capability of soft-conditioning the TSIM base representation, we can constrain a
future analysis—the posterior distribution becomes the prior for the next application. TSIM
provides the spatial information to decode the pixel-wise probabilities into lithologic realizations
with complex spatial relationships. For instance, another well could be added at the A/M area
and a new analysis conducted, much more efficiently. The new state space is much smaller, as it
only contains configurations that are consistent with the previous analysis. For extremely
complex analyses using supercomputer resources, this will provide a dramatic increase in
efficiency. Complex runs are very effectively stored in this manner. In addition to the great
effectiveness of underground imaging using the engine, we believe this will significantly
simplify the task of tracking steam injection.

This posterior-to-prior capability will greatly enhance risk analysis as well. A variety of
calculations that are completely unrelated to the engine can be run on the assemblage of new
realizations derived from the posterior distribution. For instance, the probability of contaminant
transport over many years through a site can be calculated, and then a parallel calculation made
assuming a palliative remedy has been applied. We believe this is the most powerful aspect of
the engine: taking the engine analysis and turning it into a knowledge base for the future, to be
incremented as needed.
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Application: SRS Solvent Tanks Imaging

We have also re-analyzed data collected originally as part of a steam remediation at the Solvent
Tanks site at SRS. This site was near the A/M site, and we were able to use the same lithologic
model. The purpose of this work was to demonstrate the performance of the stochastic engine
using real data from a site where improved data interpretation methods can make a difference in
remediation schedule and cost; in this case there is a direct comparison available to the
traditional analysis methods that were actually used at this site. The data were provided by
Integrated Water Resources (Santa Barbara, CA), the contractor responsible for the design,
construction and operation of the remediation system. A plan view of the site is shown in Figure
12. The electrode arrays used to collect the ERT data are located in boreholes TM6 and TM8.
The electrode array locations define a region of interest 36 m wide and 51 m deep. This ERT
plane was chosen because it is in close proximity to borehole MRS 12 where samples identifying
subsurface lithologies were collected.

Figure 13 shows the stochastic tomographs calculated using the various data sets available.
Posterior probabilities were calculated for three soil categories: sand, clayey sand, and clay. The
choice and number of categories were based on analysis of lithology data collected elsewhere

Integrated Water Resources, Inc. June 10, 2001

ERT Plane

MRS 12^

Figure 12.  Plan view of the solvent tank storage area, Savannah River site. Electrode arrays
located in boreholes TM6 and TM8 produced ERT data that has been processed by the
stochastic engine, shown in Figure 13.
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onsite. These lithology data served to establish global tendencies for the layering at SRS, e.g.,
relative proportions of the various categories, mean length and thickness for layers, and
juxtapositional tendencies between layers.

Figure 13.  Stochastic tomographs from the solvent tanks site, compared
to lithology determined in the MRS 12 drillhole.

The left column of images in Figure 13 shows the posterior probability calculated when only the
lithology sampler is used. The vertical black lines show the electrode array locations. The
horizontal dashed line indicates the water table depth. These images honor the global lithologic
tendencies at SRS but do not use any data collected locally near the region of interest. As a
result, the tomographs are “flat,” i.e., they show no evidence of distinct layering. The
probabilities for the categories are primarily dependent on their relative volumetric proportions.
For example, sand shows the highest probability because it is known to occupy the largest
volume under the SRS site.
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The middle column of images shows the posterior probability calculated when the lithology
sampler and the ERT data are used together. These images honor the global lithologic tendencies
as well as the ERT survey data. The stochastic engine now has enough information to position
the layers, indicated by the increased the posterior probabilities at some locations and decreased
probabilities at others. For example, the image corresponding to the sand/clay category shows
clear evidence of increased probability (relative to the “base sampler only” images) near the top
25% of the image.

The right column of images in Figure 13 shows the posterior probability calculated when the
lithology sampler, the ERT data and the core log data from borehole MRS 12 are used together.
In this case, the local lithology data is used to “soft-condition” (i.e., introduce a bias) the
realizations produced by the lithology sampler such that both local and global lithology data are
honored. The lithologic categories mapped along MRS 12 are superimposed on the images.
These probability tomographs honor global lithologic tendencies, local lithology information
(along the axis of MRS-12), and the ERT survey data.

The results in Figure 13 demonstrate the capacity of the stochastic engine to work with real field
problems that include measurement and numerical modeling errors. The results also demonstrate
the capacity of the stochastic engine to combine orthogonal data sets and produce probability
tomographs that honor all available data. When the orthogonal data sets are in agreement, the
posterior probabilities increase as new data is added. When there are conflicts between data sets,
the posterior probabilities decrease as new data sets are added.

Figure 14 compares the SRS-Solvent Tank Area tomographs obtained with the stochastic engine
and deterministic approaches. The deterministic tomograph is shown on the right hand side of
the figure using a gray scale color bar; the stochastic tomographs are displayed using a red scale
color bar. Evidence of layering can be seen in both types of tomographs, but the layering in the
stochastic engine (red scale) tomographs is much more realistic because it makes use of available
information about layering patterns at SRS. The deterministic tomograph searches for smooth
models that are not quite as realistic as the models proposed by the stochastic engine prior.

This comparison suggests that the stochastic engine offers some significant benefits over the
deterministic approach. This is an expected result because the stochastic engine makes use of
two data sets (electrical and lithology measurements) whereas the deterministic approach only
uses electrical data. The stochastic engine results in more accurate images because the search of
the solution space is more tightly constrained and no smoothing constraint is required. The
constraint for the stochastic engine is based on plausible lithologic architectures that have
realistic features identified using other site data. The stochastic engine also computes a range of
solutions and their probability distribution. Consequently, alternative models can be considered,
information gaps identified, and the value of collecting additional information quantified. The
primary drawback of the stochastic engine is that it is computationally intensive, requiring
approximately 100 times more forward calculations. The stochastic engine approach also
requires some prior knowledge about the system, such as the lithologic character. However, since
we usually have significant information of this kind (if from nothing else, emplacing the
electrodes within boreholes generates lithologic information), this is not a disadvantage.
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Other Representation Spaces: Parametric Problems

Application: Process-Centered Identification of WMD Activity
Converting huge amounts of data into useable information is a critical national security need, and
it is the primary output of the stochastic engine methodology. A natural application is identifying
WMD facilities through a combination of observed facility information and atmospheric
sampling information. This application would permit use of multiple kinds of data, including
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Figure 14.  Comparison of stochastic and deterministic tomographs
from the solvent tank storage area, Savannah River Site. The
stochastic results are shown using a red color scale and the
deterministic results use a gray scale.
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expert opinion, and will produce answers with quantitative confidence limits. Optimum re-
sampling methods and locations can be identified from our analysis, and when conducted, those
analyses can be combined with the original information to produce updated confidence in the
products and capacity of the facility. A national security application that has been selected for
study is the problem of identifying what, if any, chemical warfare agents are being produced at
some location. In addition to knowing the types and quantities of agents being produced,
interdiction planning is facilitated by knowledge of the particular production pathways by which
the agents are manufactured. Since the answers to these questions are not usually directly
obtainable, they are typically estimated from the analysis of circumstantial and indirect evidence.
In this application, definitive answers are rare and reducing the range of alternative answers is an
acceptable goal of analysis.

Problem.  A synthetic example is being developed and is depicted in Figure 15. This
(hypothetical) facility is known to produce thiodiglycol (TDG), a common dual-use chemical. It
is suspected of also producing sulfur mustard, since sulfur mustard can be manufactured from
TDG by adding one of several common chlorinating agents. Although the fact that TDG is
produced here is public, the specific pathway is unknown. Conclusions regarding production at
the site must be deduced from observations of external activity and clandestinely obtained air
samples.

Base Representation.  Given the scarcity of evidence that can be brought to bear on problems of
this nature, it is critical that there be some objective structure against which to evaluate each item
of data. For problems like the one depicted in Figure 15, the chemical process model provides
that structure. This model, often referred to as a flowsheet, identifies the steps by which starter
chemicals are transformed into products and by-products. It specifies not only the reactions
involved but also post-reaction processing and waste-stream handling. Once all the steps are
specified, the flowsheet can be submitted to a chemical process simulator such as ASPEN which
calculates expected output quantities of all products and by-products, together with additional

data such as reaction temperatures and
pressures and the composition of
controlled emissions. The flowsheet
represents the conceptual model of the
facility’s activity and may or may not
include a spatial representation of the
components.

The elements of the base representation
which are manipulated for the purpose of
model inversion are portrayed in Figure
16. Generating a single configuration of
the flowsheet is a two-step process. First,
as is shown in the left-hand portion of
the figure, the product and its
formulation must be determined. The
TDG network shown in the figure
contains two alternative formulations,
path A and path B. It is not only

Figure 15.  A hypothetical industrial site. Buildings
A–C contain the main processing facilities; D and E are
for storage and support.
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necessary to select a path but also to determine whether the precursor chemicals are being
manufactured on-site or being imported from elsewhere. The red shaded area in the figure
indicates a selection of TDG manufacture via path B and that the precursors ethylene oxide (EO)
and hydrogen sulfide (H2S) will be considered the starter chemicals.

The right-hand side of the figure gives a highly simplified illustration of how the
production/formulation selection is translated into a flowsheet. The starter chemicals are shown
entering a reaction step from which TDG is directly obtained and after which excess H2S is sent
to a scrubber. In the scrubber, H2S combines with caustic soda (NaOH) to produce caustic
sodium sulfide (Na2S), which is shipped to another facility for sulfur recovery. At this point,
gases are also generated and vented.

Examples of manipulated flowsheet elements include continuous variables such as the available
quantities of the starter chemicals and nominal variables such as the type of vessel chosen for the
reactor step. Equipment alternatives have a significant impact on subsequent calculations
because they affect, among other things, capacities and efficiency factors. Examples of the types
of quantities calculated by ASPEN are shown in green and include both the expected quantities
of TDG and Na2S and, often more importantly, the composition of vented gases. While ASPEN
also calculates pressure and temperature information, these phenomena are too diffuse to be
measurable with any useful precision from outside the facility.

MCMC Inversion.  Figure 17 attempts to place the process-centered identification problem
within the MCMC context. The prior and posterior distributions of process models are
visualized as collections of flowsheets (each having a non-trivial probability of occurrence)
rather than as a landscape of probabilities. The goal of the MCMC process is to winnow the large
collection in the prior distribution down to a smaller set. Prior probabilities are derived mainly
from common industrial practices.

Figure 16.  Base representation of the process-centered identification problem. Manipulated
parameters are shown in red; outputs to be predicted and observed are shown in green. To
save space, the sulfur mustard aspects of the problem are not shown.
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The figure also shows how the ASPEN process simulator generates predictions that are
compared with different data types to create a multi-stage inversion for the synthetic example. In
the first stage, ASPEN calculations of product and by-product quantities are compared with
“direct observations” of barrels on the loading docks. In the second stage, ASPEN calculations of
the relative concentrations of vented gases at the source (i.e., the stacks shown on Building B)
are combined with a simple atmospheric dispersion model to predict concentrations at various
points in the vicinity. These calculations are then compared with air samples to form the second
inversion stage. Although essentially the same process model is used in both stages, the
independence assumption is not violated because the data sources are independent of each other.

Application: Refining a Parametric Base Representation—
Reactive Transport Modeling of Plug-Flow Reactor Experiments

Reactive transport modeling is a unique methodology for numerically simulating coupled
thermal, hydrological, geochemical, and geomechanical processes in the subsurface. It provides
an invaluable predictive tool for both forecasting and optimizing engineered perturbations to
many geologic environments of strategic and economic significance (Johnson et al., 1999).
Important LLNL applications include nuclear waste disposal and geological sequestration of
carbon dioxide (Johnson et al., 2001). However, in its current state of maturity, the power of this
approach—explicit coupling of many complex geological processes—carries with it a daunting
challenge: quantitative assessment of an integrated assemblage of model and parametric
uncertainties that are, in many cases, substantial. The stochastic engine provides an innovative
means of integrating and quantifying these uncertainties.

Figure 17.  Process-centered identification problem in the
MCMC context.
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This application is fundamentally distinct from the SRS/ERT problem. Here, the base
representation is defined by parametric distributions for minerals within a single lithology, as
opposed to spatial distributions of lithologies having fixed parametric descriptions. Thus, the
reactive transport and SRS/ERT problems define “end-member” parametric and spatial
investigations.

The plug-flow reactor (PFR, Figure 18) provides a tightly constrained laboratory physical model
of one-dimensional reactive flow (Johnson et al., 1998). In particular, the temperature, pressure,
and flow rate are kept virtually fixed throughout the plug, the composition of infiltrating fluid
and crushed rock is pre-determined, and the porosity and physical properties of individual rock
grains are measured to within a close tolerance. The time history of the effluent concentrations at
the outlet side of the plug is then measured, and a post-mortem mineralogical analysis of the plug
is performed.

Figure 18. PFR experiments provide a well-constrained physical model of 1D
reactive transport.

The essential features of observed steady-state effluent concentrations and
dissolution/precipitation features can be successfully modeled using a reactive transport
simulator, the NUFT code (Nitao, 1998a,b). Whether employing an iterative deterministic
approach (Johnson et al., 1998) or the stochastic engine the fundamental match to be obtained is
that between effluent concentrations and mineral dissolution and precipitation rates.

The tuff dissolution experiment in Figure 19 is characterized by well-constrained thermodynamic
and physical parameters for primary and secondary minerals (Johnson et al., 1992), and very
large uncertainties in the kinetic parameters for secondary minerals during their nucleation and
early growth. In our previous deterministic modeling investigation, we adopted fixed values for
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the relatively certain kinetic parameters of primary minerals, then iteratively varied the more
uncertain kinetic data for potential secondary precipitates until predicted and observed effluent
concentrations were brought into close agreement (Johnson et al., 1998). The stochastic engine
offers a more systematic and quantitative approach.

Figure 19.  Plug-flow-reactor test of dissolution of tuff rock addresses the question of how small
amounts of secondary mineral precipitation affect dissolution. Symbols show experimental data,
lines indicate simulation. (Left) Precipitation allowed. (Right) All precipitation suppressed.
Engine analysis will be used to find the correct degree and rate of mineral precipitation, among
other results.

Application of the stochastic engine poses the following four fundamental challenges.

• Construction of the staged base representation. The relevant kinetic parameters for this
experiment are readily grouped into two classes based on their relative uncertainty. The
first-stage base representation includes the most uncertain kinetic data with all other
parameters assigned fixed values. In the second stage, we include the remaining kinetic
parameters. Potential subsequent stages will further include selected thermodynamic
properties and process models, such as alternative representations of reactive surface
areas.

• Determination of the prior probability distribution functions. The prior distribution of
mineral properties will be constructed using upper and lower bounds and statistical
methods, such as Parzen windows, as appropriate.

• Definition of the likelihood function. In order to determine the closeness of fit between
predicted and observed effluent concentrations and dissolution/precipitation features, we
will analyze experimental measurement errors and determine their statistical distribution.

• Evaluation of the posterior probability distribution. The posterior probability distribution
for the mineral properties will be constructed from the sample frequencies generated by
the engine. This distribution will be analyzed by selecting specific instances of the
highest probability state space and graphically confirming their “closeness of fit” and by
evaluating reasonableness (in terms of theoretical considerations) of these predicted high-
probability parametric values and their associated uncertainties.
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Successful application of the stochastic engine to the plug-flow reactor problem will lead to a
new methodology for analysis of complex experiments. It will also demonstrate applicability of
the engine to systems that have discrete parametric components. For the most complex problems,
such as evaluating the performance of a nuclear waste repository, this kind of parametric analysis
will allow us to break the problem up into more manageable segments. Once an accurate
distribution of parameter values for a system such as the tuff dissolution case is available, it
becomes part of the prior knowledge for large-scale experiments.

Engine Performance

MCMC Application: Development of New Stochastic Search Algorithms

The Metropolis algorithm (Metropolis et al., 1953) that is used by the engine in order to perform
its stochastic search is guaranteed to eventually produce samples that obey the desired posterior
probability distribution (Hastings, 1970). However, samples during an initial “burn-in” period
must be discarded until the distribution of the generated samples converges to the desired
distribution. After the burn-in period, there is some unspecified number of iterations necessary
for accurately sampling the important regions of the state. The number of iterations needed for
burn-in and for sampling the posterior depends on the particular problem and is usually
determined by an appropriate suite of diagnostic tools.

Because of the high computational cost of running complex forward models, the number of
necessary iterations should be made as small as possible. We have identified the following ways
to help achieve this goal.

• Averaging of the state space to remove high-frequency features.
• Multi-level searching at different resolution scales.
• Adaptation of the search using information from previous iterations.

An Averaging Algorithm

One cause of slow convergence is the very steep local maxima in the likelihood function that is
present for many inverse problems. We also discovered that systems with high-dimensionality,
such as spatial problems, also suffer from a likelihood function that has a multitude of high-
frequency features. Both aspects lead to slow convergence because the spatial step change (step
size) of each search iteration must be very small to match these small-scale likelihood features.
Many iterations will then be required in order to adequately sample the state space.

A solution to these difficulties is to perform some form of state space averaging over a resolution
scale of interest. The posterior probability density fX*(x) is proportional to the product of the
likelihood function L (x) and the prior density fX (x),

fX*(x) ∝ L(x) fX (x)

Simple averaging of both sides of this equation, however, will not preserve the form of this
relationship because the average of a product is, in general, not the product of the averages. Even
if this were true, it is not obvious, in general, how to generate samples from the averaged prior
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density. We have developed a new method, which we call transition neighborhood averaging,
which gets around these problems (Nitao and Hanley, 2001a, 2001b).

Using this method of averaging, it can be shown that the averaged posterior density fX*(x)  is
given by

fX*(x) ∝ L(x) fX (x)

where L(x) is an averaged likelihood function. The averaging operator is equal to the
expectation with respect to the transition probability of the proposal Markov chain. Note that the
prior density function in the above expression is unchanged so that samples can be generated
using the original prior distribution. The only modification to the basic MCMC algorithm is to
replace the non-averaged likelihood function L(x) by L(x).

The averaged likelihood L(x) must be determined using sensitivity simulations or by an
approximate method that uses displacements in the state at previous iterations. Another
important feature of the new averaging method is that the scale of averaging is always the same
as the magnitude of the step size.

Multi-Resolution Methods

The step size of the stochastic search algorithm must be comparable to the scale desired for
resolving the posterior distribution. However, the smallness of this step size can reduce the
efficient searching of the state space. A solution is to perform the search at different scales using
multilevel stochastic search algorithms, such as simulated tempering (Marinari and Parisi, 1992)
and tempered transitions (Neal, 1996). To apply these algorithms the likelihood function is
smeared over coarser and coarser scales at higher and higher levels. The method of smearing that
is usually presented in the literature is ad hoc, and no relationship is given for relating the step
size and the amount of smearing.

The averaging method described in the preceding subsection is an ideal way to implement
multiresolution algorithms by the use of larger and larger step sizes at coarser and coarser levels.
The amount of smearing will then correspond exactly to the magnitude of the step size, and the
step size will correspond to the desired resolution scale. In this way larger time steps at higher
levels can rapidly traverse long distances in the state space while smaller steps at lower levels
will be able to resolve the finer details of the posterior distribution.

Adaptive Markov Chain Monte Carlo Methods

Slow convergence, or “mixing” to the stationary posterior distribution is, in a large part, a
consequence of the immense state space present in geological problems. Our solution to this
problem is the development of adaptive methods whereby the algorithms learn from random
variates that are generated for improving performance.

From a statistical perspective, the performance of an MCMC algorithm may be approached from
two angles: rate of convergence to the stationary distribution and precision of estimated
quantities along the sample path. The adaptive implementation of our MCMC routine learns
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from and optimally adapts through consideration of these two objectives with respect to the
random variates generated by the algorithm. The ultimate goal is inexpensive adaptation, that is,
optimization over these two objective functions at a minimal computational cost. To this end, we
studied Gaussian approximations to posterior distributions of interest under which computation
of convergence rates and precision measures, if not available in closed form, are readily available
in computationally attractive formulations.

Recent developments are:

• We developed a general class of MCMC routines under which adaptive routines are most
easily developed, analyzed, and implemented (Levine, 2001).

• We developed the underlying theory and constructed the adaptive Gibbs sampler
algorithm (Levine and Casella, 2001).

• We analyzed the adaptive Gibbs sampler from a computational cost perspective (Levine
et al., 2002a).

• We developed the underlying theory and constructed the adaptive Gibbs sampler
algorithm (Levine and Casella, 2001).

• We extended the results from our adaptive Gibbs sampler to the more general Hastings
sampler, within which the Metropolis sampler is a special case.

We plan to develop inexpensive implementations of the adaptive Hastings algorithm. This work
is currently in preparation in Levine et al. (2002b).

Diagnostics and Posterior Inference

The stochastic engine is comprised of a variety of predictive forward models and specialized
software modules rolled into a single integrated framework. Over the last year, this prototype has
continued to evolve and grow in both complexity and functionality. The dynamic nature of this
development demands that the validation of the embedded MCMC simulations be an ongoing
priority. To address this need, run-time diagnostic tools capable of validating different aspects of
the simulation have been developed, implemented and tested on both synthetic and real data.
Several of these techniques are presented below. With a validated simulation, methodology for
utilizing the generated posterior samples becomes a fundamental issue. In response, an effort to
develop a statistical inference toolbox capable of supporting decision and risk analysis was
initiated.

Simulation Diagnostics

The stochastic engine employs an MCMC algorithm to construct a probabilistic estimate of the
state of nature that is consistent with observed data, modeling assumptions and prior knowledge.
For our earth science application, the state of nature refers to a multi-attributed lithology map of
a volume of earth. The engine produces a sample from the posterior distribution f(x|data), which
is the conditional probability distribution of the state of nature, given the data. This sample is a
sequence of possible states of nature, x(1), x(2), …, x(T), … and is the entire basis for characterizing
the posterior distribution and performing subsequent analysis. Theoretical results ensure that the
sample eventually spans the entire posterior distribution and supports the estimation of the state
frequencies that characterize the posterior. In mathematical jargon, the sample forms an ergodic
Markov chain with stationary distribution f. This means that once the chain has taken a sufficient
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number of steps, T0, the distribution of the state, x(T), at any step T ≥ T0 is exactly the posterior
distribution, f. We call T0 the “burn-in” time. Hence, the MCMC process begins at a particular
state and after the burn-in period, it essentially forgets where it started. Determining the burn-in
time, examining how effectively the sampling process is moving through the posterior
distribution (called “mixing”), and validating known properties of the chain/distribution are all
intended uses of the developed diagnostics.

Convergence to Burn-in
The convergence of the MCMC algorithm to burn-in is guaranteed when the proposal random
walk is ergodic. This means that the samples produced will eventually be drawn from the
posterior distribution. But, this result does not mention the actual rate of convergence. In fact,
there are virtually no theoretical results on convergence rates which can be applied to most real
world problems. Nevertheless, determining the burn-in point is critical to insure that any
inference based upon the posterior distribution is not corrupted by “bad” samples. Hence, there is
a strong need to develop a diagnostic method capable of assessing the convergence behavior of a
given MCMC simulation.

The approach selected (due to Gelman and Rubin, 1992) employs multiple independent Markov
chains to simultaneously estimate the burn-in period length T0 and establish the claim of
stationarity of the remaining samples. Each of the parallel chains has a different starting point,
but they share a common limiting distribution, the posterior f. The Gelman-Rubin diagnostic
detects when the variability between the chains settles down to a value that is expected when the
chains are all sampling from a common distribution. To accomplish this, a parameter that is a
multidimensional function of the state of nature must be identified for tracking throughout the
simulation. For the SRS problem, a cross section of earth was split into two regions, upper and
lower. A contiguous subregion is summarized by the triple z = (z1, z2, z3), where z1 is the area, z2

is the horizontal coordinate of the centroid, and z3 is the vertical coordinate. By considering the
largest contiguous subregion for each of the two cross section halves and two lithology types, say
clay and silt, the dimensionality of the tracked parameter becomes p = 2x2x3 = 12.

The diagnostic tracks three quantities Rp, detV, and detW, which are functions of the p-
dimensional states of the parallel chains for a moving and expanding window of steps. The
window is characterized by a single parameter n. For example, n = 50 refers to the window of
length 50 iterations from iteration 51 through iteration 100, and in general, the window of size n
considers each chain within the iteration sequence n+1, n+2, …, 2n. The p-dimensional matrix W
estimates the within chain variability for the window n, and the p-dimensional matrix B/n
estimates the between chain variability for the same window. The pooled p-dimensional matrix
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where m is the number of chains, is an estimate of the covariance matrix of the posterior
distribution of the parameter of interest. As n increases, i.e. the window moves and expands, the
influence of the starting points on the individual chains diminishes, and the following conditions
emerge:
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• The within chain variation, summarized by detW, stabilizes. Typically, detW increases, as
new areas of modality of the parameter space are explored by the chains, before settling
upon a limiting value.

• The pooled chain variation, summarized by detV, stabilizes, a result of the combined
effect of the difference between chains, characterized by B/n, becoming negligible and
the within chain variation stabilizing.

• The matrices V and W become close to one another. The measure of the distance between
V and W is taken to be:
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where λ1 is the largest eigenvalue of the matrix W -1B/n. As the distance between V and
W diminishes, Rp approaches 1.

The diagnostic monitors Rp, detV, and detW, as a function of the window parameter n. For
sufficiently large n, say n ≥ T0, the conditions, detW and detV approximately constant and Rp

close to 1, are satisfied. The nearness of Rp to 1 suggests burn-in has occurred by step T0, in that
the between chain variation is negligible (hence the starting points have been forgotten);
stabilization of the determinants in turn provides evidence that samples within the window,
starting at iteration To+1, adequately characterize the stationary posterior distribution.

Example plots of the statistic Rp and the determinants detV and detW as functions of n are shown
in Figures 20 and 21 for the Savannah River lithology problem, with dimension p = 8, based on
analysis of the centroid but not the area. Four parallel chains were used in the simulation. The
statistic R8 approaches 1 and the determinants stabilize around n = T0 = 500 iterations, the
estimated burn-in length. Note that detV always exceeds detW, and the two curves go up and
down in tandem, ultimately converging.
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Figure 20.  The Rp plot for Savannah River Problem, p = 8, m = 4. Note
that it approaches 1 near n = 500.

Figure 21.  Plots of detV and detW for Savannah River problem, p = 8,
m = 4.  Note that both curves stabilize and approach one another near
n = 500.



41

Mixing

The cumulated sum (or cusum) plot monitors, for a given MCMC process, the partial sums

S h x h xt
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 , t = T0+1, …, n,

where h(x) is a scalar parameter of interest, say the depth of the centroid of the largest contiguous
region of a particular lithology type within a volume of earth, T0 is the length of the burn-in

period, and h x( )  is the average value of h(x) over the post burn-in steps T0+1, …, n. The plot
displays St versus t for the range t = T0, T0+1, …, n, with ST0

0=  and Sn = 0 by definition.

The cusum accumulates the differences between the value of a parameter at a given step and the
overall average post burn-in value. It assesses the mixing speed of the chain (i.e., how fast a
chain steps through the posterior distribution) and correlation between the x(t)’s. If the chain is
slowly mixing the values of h(x(t)) do not change much in a neighborhood of t, and the plot is
smoother and wanders farther from zero than if the chain is faster mixing, in which case the plot
resembles Brownian motion.

The cusum is a subjective diagnostic that helps identify sampling schemes that are so slow
mixing that alternative algorithms or parameterizations should be sought in order to more
efficiently traverse the entire parameter space. Examples of the cusum are shown in Figures 22
and 23 for the dimension p = 8 Savannah River problem and for the dimension p = 2 Blob
problem. In each case, the scalar parameter monitored is the depth of a contiguous region of
specified lithology type, and the cusums of five parallel chains are plotted simultaneously. Figure
22 indicates faster mixing than Figure 23. Note that some chains are slower mixing than others,
evidence of a chain’s hanging around a particular mode for an extended period.

Figure 22.  Cusum plots for 5 chains—Savannah River A/M Outfall lithology problem, p = 8.
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Figure 23.  Cusum plots for 5 chains—blob problem, p = 2.

Distributional Characteristics
In addition to the above methods, two additional diagnostic tools have been developed, tested
and incorporated into the current version of the stochastic engine. Both tools are concerned with
validating known distributional properties of the generated sample. The first diagnostic focuses
on the stationarity of the post burn-in portions of multiple chains. Specifically, the acceptance of
a Kolmogorov-Smirnov two sample test performed on selected post burn-in subsamples provides
a method for validating the existence of expected internal stationarity of the chain. The second
diagnostic is concerned with testing the normality of a selected mean based upon post burn-in
samples. In this case, a Kolmogorov-Smirnov one sample test provides the basis for confirming
the normality of the mean. In both cases, a properly functioning simulation will exhibit
characteristic behavior that approaches a known ideal, allowing for the identification of
problems. Moreover, the absence of any pathological behavior is evidence of a properly
functioning simulation. These tools combine with the prior two techniques to provide a well
founded methodology for validating the engine’s simulation process.

Posterior Inference Tools

The development of a statistical toolbox tailored to the type of information produced by the
engine’s MCMC simulation and supporting a variety of inference tasks is critical to maximizing
its utility and application. Specifically, the engine generates a collection of samples from the
posterior distribution defined on the possible states of nature. By construction, these samples
embody the entirety of our available information and form the foundation for all subsequent
posterior analyses. But, in their raw form, they are generally capable of only providing the basis
for a coarse examination of the posterior distribution and its corresponding properties. To
support moderate to detailed inference, including formal decision and risk analysis, specific
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methodologies require development and/or adaptation to the current problem domain. This effort
has been initiated from two distinct perspectives. The first focuses on estimating and
characterizing the marginal posterior distributions of lithology at each individual pixel; while,
the second endeavor addresses the more challenging problem of estimating the joint posterior
lithologic distribution. Both of these efforts are discussed in the following sections.

Marginal Distribution of Lithology

The Stochastic Engine uses new data to update existing information. The existing information is
summarized by a prior distribution on the possible states of nature, while the updated version is
summarized by the posterior distribution on these same states. Neither the prior nor the posterior
is available in closed form, but the engine allows samples to be generated from both
distributions. In its standard mode, the engine automatically generates samples from the
posterior. But, if the engine is modified to accept all states proposed by the forward model
sampler, the prior rather than the posterior is sampled. By running the engine in both modes,
samples from each distribution can be generated and compared. This information allows the
following quantities to be estimated.

• The uncertainty in our current understanding of the state of nature as indicated by the
variability of the prior distribution.

• The uncertainty in our updated understanding of the state of nature as indicated by the
variability of the posterior distribution.

• The effect of incorporating new data on our understanding of the state of nature as
indicated by the change in variability present in the posterior and prior distributions.

In the discussion that follows, attention is restricted to estimating subsurface lithology for a two-
dimensional cross section at the SRS. Prior information consists of well data that identifies
lithology along a vertical borehole and spatial models embodied within the sampler TSIM. The
new data consists of ERT data. We consider the problem of categorizing the lithology type
(sand/gravel, silt, or clay) at each pixel in the cross section. Because of the restriction to
individual pixels, the subsequent analysis focuses upon the estimation of the marginal prior and
posterior distributions of lithology at each pixel separately. Approaches for dealing with the
spatially contiguous joint estimation problem (lithologic distributions defined on entire images
rather than single pixels) are much more difficult and are outlined in the next section.

For a given pixel, a sample of lithology classifications from the prior distribution can be modeled
using a multivariate Bernoulli distribution, with parameters ( , ... , )( ) ( )p pk1

1
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1
+  where k+1 is the

number of lithology types (k+1 = 3 in the Savannah River example), and p j
( )1  is the prior

probability of categorizing the pixel as having lithology type j, with p pk1
1

1
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a posterior sample of lithology types can be modeled by a multivariate Bernoulli distribution,
with parameters ( , ... , )( ) ( )p pk1
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( )2  is the posterior probability of categorizing the pixel as

having lithology type j, with p pk1
2

1
2 1( ) ( )...+ + =+ . Since the prior and posterior distributions are of

the same type, we will simplify notation wherever possible by eliminating the superscript, with
the understanding that the development applies to the prior and posterior alike.
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The multivariate Bernoulli random variable will be denoted as X = ( )X Xk

T

1, ... , , where Xj  = 1 if
the pixel is categorized as having lithology type j and Xj  = 0 otherwise, with X Xk1 1 1+ + =+... .
Sufficient information about the probability parameters is contained in the sampled frequencies
of the various categories, Nj, j = 1, …, k+1, N N Nk1 1+ + =+... , where N is the total sample size,
and N X Xj j jN= + +1 ...  with Xji being the indicator of classification as lithology type j at sample

i. For example, in the Savannah River case, N3
2( ) represents the total number of times in the

posterior sample the pixel was categorized as type “clay”.

The inherent degree of uncertainty or variability in classifying the lithology type at the given
pixel is a function of the {pj}. We consider a scalar measure of uncertainty, called the
generalized variance, that is based on the k k×  dispersion matrix of the Xji For this model, the
generalized variance equals the determinant of the dispersion matrix, and is simply the product

D p jj

k
=

=

+∏
1

1
.

The larger the value of D, the greater is our uncertainty. Smaller values imply less uncertainty. If
the lithology type is known with certainty, say of type t, then pt = 1, and pj = 0 for j ≠ t, and D =
0. When the lithology type is not known, the value of pj is estimated by the relative frequency
from the sample, p̂ N Nj j= . Such estimates of the pj result in an estimate D̂  of the generalized
variance.

The estimated generalized variance D̂ provides a measure of the degree of uncertainty in
assessing the state of nature. By calculating D̂ at each pixel we can compare the relative amounts
of uncertainty and produce a coarse ordering. In Figure 24 we see graphs of the generalized
variance for SRS runs of sample size 2500 for the prior and 2400 for the posterior. These sample
size values represent the number of post burn-in iterations. The metric D̂ is linearized to a 0 to 1
scale and the contour plots are colored so that darker colors indicate smaller variability: the color
scheme is dark brown->brown->green->yellow->pale-yellow as the metric ranges from 0 to 1.
Note that there exist a number of band-like subregions of comparable variability.

At any given pixel the data would be expected to have some influence on the prior lithology
classification probabilities { p j

( )1 } so that the posterior probabilities { p j
( )2 } are different.

Hopefully, this difference would be in the direction of reducing uncertainty, but this is not
guaranteed. (For example, the prior could be overly compact and new data shows this to be an
unreasonable assumption, and attempts to improve the characterization by forcing the posterior
to be more dispersed.) To examine the influence of new data, the following statistical tests were
implemented and applied.

• A χ 2 test of equality of two multinomial distributions. This procedure examines whether
there is any significant difference (in either direction) between the prior and posterior
pixel classification probabilities.

• A test for a reduction in variability as measured by the generalized variance metric.
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Figure 24.  (Top) The estimated prior generalized variance for the Savannah River site
example, based on a post-burn-in sample of size 2500 from the prior distribution. Darker
colors indicate smaller amounts of pixel-level uncertainty.  (Bottom) The estimated posterior
generalized variance, based on a post burn-in sample of size 2400 from the posterior
distribution.
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Results of the χ 2 test on the previous Savannah River example are shown in Figure 25.
Illustrated are the p-values at each pixel. A p-value is the probability that under the assumption
of equal distributions (i.e., the prior and posterior are the same for the pixel in question), a χ 2

random variable with k degrees of freedom would exceed the statistic,

χobs
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calculated from the generated samples. A small value, such as 0.05, is evidence that the observed
frequencies are very unlikely if the distributions are equal and hence the new data changed the
classification probabilities. Note that Figure 25 displays an abundance of low p-values, and
hence the data had a significant influence at most pixels.

The test for the reduction in variability is based upon large sample statistics which ensure, under
the assumption of equal distributions, that the statistic,

Z
N

k

D

D
= −











( ) ( )

( )

ˆ

ˆ

2 2

12
1 ,

has an approximate standard normal distribution. Evidence of departure from the equality
hypothesis in the direction of reduced variability is provided if the posterior estimated
generalized variance is sufficiently smaller than the prior version to make Z significantly small.

Instead of using a formal test to contrast changes in distributional variability, one may simply
compare the generalized variances of the posterior and prior distributions via an examination of
their log ratio. Figure 26 displays these ratios for the Savannah River Site example. Observe that
for several horizontal bands of pixels there appears to be a significant reduction in variability
from the prior to the posterior, as indicated by the brown colors which correspond to small ratios
of the posterior generalized variance to the prior generalized variance. In these cases, the effect
of the new data is a significant reduction in our degree of uncertainty. On the other hand, the blue
colored areas indicate a significant increase in our degree of uncertainty. This is because, as we
observed in Figure 25, the new data affect nearly every pixel significantly, one way or the other,
relative to our prior assessment.
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Figure 25.  χχχχ2 p-values for testing the equality of the prior and posterior classification probabilities in
the Savannah River site example, based on a post-burn-in sample of sizes 2500 and 2400 from the
prior and posterior distributions, respectively. Small p-values are evidence of significant differences
in the prior and posterior probabilities.

Figure 26.  Log ratios of the posterior generalized variance to the prior generalized variance for the
classification probabilities in the Savannah River Site example, based upon a post-burn-in sample of
sizes 2500 and 2400 from the prior and posterior distributions. Smaller log ratio values (indicated by
the dark brown shades) indicate larger reductions in uncertainty when ERT data are combined with
the prior distribution to produce the posterior distribution.
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Finally, if one were required to reach a conclusion on what the lithology is at a particular pixel, a
reasonable choice would be the lithology type with the highest posterior classification
probability. Specifically, one would classify the pixel as lithology type m, where

ˆ max{ ˆ : }( ) ( )p p j km j
2 2 1 1= ≤ ≤ +

and ˆ ( ) ( ) ( )p N Nm m
2 2 2=  is the modal posterior classification probability for the given pixel. From

large sample statistics, a lower confidence bound for pm
( )2  is

p p z p p N
m m m m
( ) ( ) ( ) ( ) ( )ˆ ˆ ( ˆ )2 2 2 2 2 1 2

1= − −( ) ,

where z denotes the normal quantile for the desired confidence level. For example, one uses z =
1.28 for 90% confidence. Figure 27 depicts 90% lower confidence bounds for each pixel’s modal
posterior classification probability. Hence, if a lower bound at a given pixel is p

m

( ) .2 0 95= , then

one asserts with 90% confidence that the posterior classification probability for lithology type m
is at least 0.95. It is interesting to compare the results given in Figure 27 to similar lower bounds
based on samples from the prior distribution (not shown). The logarithm of the ratio of posterior
versus prior modal probability lower bounds is displayed in Figure 28. The darker areas (positive
values) indicate higher modal probabilities for the posterior, the lighter areas (negative values)
indicate higher modal probabilities for the prior, and the white areas (values close to zero)
indicate the posterior and prior modal probabilities are about the same. Hence, in the dark areas,
the combination of data and the prior yielded higher modal probabilities and more certainty,
while the other areas became less certain (yellow shades) or were unchanged (gray or white
shades).
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Figure 27.  90% lower confidence bounds on the modal posterior classification probability in the
Savannah River site example, based on a post-burn-in sample of size 2400 from the posterior
distribution.

Figure 28.  The logarithm of the ratio of posterior versus prior modal classification probability lower
bounds in the Savannah River site example, where the post-burn-in prior and posterior sample sizes
were 2500 and 2400, respectively.
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Pixel level inference methods provide useful insight into the marginal behavior of the lithologic
distribution. In fact, this marginal information can often indicate coarse behavior and
characteristics of the joint distribution of lithology. But, due to the loss of spatial information
that occurs when pixels are characterized individually, this extension of marginal results to the
joint case must be taken with a grain of salt. To bridge the gap, research into characterizing the
joint lithologic distribution is under way and is the topic of the next section.

Joint Distribution of Lithology

A lithologic image typically has hundreds, often thousands of pixels in it. Posterior samples can
run into the thousands in number, making meaningful inference computationally challenging.
This situation is compounded by the collection of samples being very sparse in their
distributional support. Successful inference methodologies must avoid these dimensionality
problems, but at the same time be computationally efficient. One technique which addresses
these issues is global clustering, that is grouping together images that are similar in a well-
defined sense to one another. The cluster centers and the associated cluster frequencies offer a
good guide to the distribution under study. Recently developed clustering algorithms
(PROCLUS, CLIQUE), which address problems similar to ours, have demonstrated promising
results. Another approach which complements a variety of inference methodologies (including
clustering) involves the transformation of the sampled images into a lower dimensional space.
Commonly used transformation methods like Karhunen-Loeve Expansion, Fourier Transform,
and Singular Value Decomposition all turn out to be inappropriate for our subsurface application.
But, a particular type of wavelet transformation appears to hold promise as an inference
preprocessing step. Specifically, a uniform wavelet shrinkage method significantly reduces the
dimension of the wavelet transforms of the lithology images, making clustering and other
inference algorithms easier to apply. These approaches are discussed briefly in the subsequent
sections.

To better understand the posterior distribution, one can apply a form of clustering to the
generated posterior samples. Specifically, clustering will yield a relatively small number of
clusters for which within-cluster similarities are much greater than those between distinct
clusters. This structure will enable us to provide a probability estimate for each cluster with a
physical representation of the cluster center in terms of lithologic characteristics. But, to leverage
clustering methodology in the subsurface application domain, any selected algorithm must be
adapted to handle labeled data. Specifically, clustering algorithms rely upon the definition of a
similarity measure which is applied to pairs of samples. However, since our representation
provides pixel values which are labels indicating a pixel’s lithologic type, the similarity measure
will require modification to handle nominal data. For example, one must provide a suitable
definition of the cluster center and a procedure to update it when a new sample is added or
deleted when required by the algorithm. To this end, the several concepts have to be adapted to
the nominal case and formalized.

To define a similarity measure capable of handling labeled data, a lithologic image is viewed as a
vector of n binary images—one image corresponding to each of the n possible pixel labels. In
each binary image, a pixel has a value of 1 (or 0) to indicate the presence (or absence) of the
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lithology type in the original image. For example, in the case of three lithology  types (e.g., clay,
gravel, silt) one can write I I I Ic g s= ( , , ) . Then, if a second lithology image J has the

representation J J J Jc g s= ( , , ) , the similarity of the image pair, denoted by S(I,J) can be

computed as follows.

S I J CC I Jl l
l

n

, ,( ) = ( )
=
∑ 0

1

where CC I Jl l0 ( , ) denotes the cross-correlation at lag(0,0) between binary images Il  and Jl .
Note that this similarity measure can be generalized by defining it as the average of itself and
eight lagged cross-correlation’s, where the lags are based on an 8-neighborhood of each pixel
(for 2D images, 26-neighborhood). Additionally, the sum in the above definition can be replaced
by a weighted sum, where the weights form a normalized n-tuple embodying the relative
importance of the specific lithology types for the given application.

When considering the assignment of a new sample to a cluster, the similarity of that sample to
the cluster center and a corresponding user-specified threshold T are used to determine
membership. An individual cluster is parameterized by the number of samples used to form that
cluster and its n label constituents. For each pixel, the constituents are normalized over the n
labels yielding a sum equal to 1. For example, suppose there are three lithologies and consider a
particular pixel with center components (c, g, s) = (.6, .1, .3) in a cluster of n=10 samples. The
addition of a new sample (1, 0, 0) (i.e. a clay pixel) results in the cluster parameters being
updated to n =11 and the pixel’s center components become (7, 1, 3) / 11. In other words, the
pixel in the updated cluster consists of 7 clay, 1 gravel and 3 silt pixels. Observe that with
similarity well defined, the threshold T ∈[0,1] effectively determines the number of clusters
formed varying from 1 to N = number of samples. The choice of T  is obviously application
dependent – often proceeding by trial and error.

Suppose there are three lithologies and the algorithm produced K clusters C1, C2 … CK arranged
in decreasing order of their sizes N1, N2, …NK. with associated cluster centers given by the triples,

I I I I I I I I Ic g s c g s cK gK sK1 1 1 2 2 2, , , , , , ..., , ,( ) ( ) ( )
For simplicity, one may label the cluster centers by the dominant lithology in each pixel. For
example, if the largest component in the triple corresponds to clay and it exceeds a threshold of
say .5, then it would be labeled a clay pixel. If the dominant lithology of the cluster center does
not exceed the chosen threshold, then a neutral lithology can be introduced to represent that
indeterminate pixel. The process is repeated for each pixel in the image, yielding a single image
for each cluster center which can be regarded as representative of its constituent members.
Hence, we can produce a frequency distribution of the clusters which are represented as single
lithologic images. This allows one to assign probabilities to states ranging from the most likely to
the least likely lithologic explanations of nature (i.e., cluster centers). The effectiveness of this
method when applied to the current problem domain is presently unknown, but, in similar spatial
applications, clustering methodology has provided an effective method for characterizing high-
dimensional distribution behavior.
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The development of an effective approach to simplifying the characterization of high-
dimensional lithologic distributions is under way. This effort is focused on the development of a
computationally efficient and near information preserving transformation of lithologic images
into a lower dimensional space via a “uniform” wavelet shrinkage method. The uniform manner
of this approach distinguishes it from the usual wavelet compression methods. Specifically, in a
typical wavelet shrinkage, coefficients are truncated based on their magnitudes. The retained
coefficients, potentially can be located in different regions of the 2-D wavelet coefficient space
for different lithology samples. So for any clustering procedure to be successful one must use the
full dimension of the wavelet coefficient space, namely the dimension of the lithology image
space. This renders the transformation useless for our purposes. This problem can be
circumvented if the significant coefficients (coefficients that produce a good approximation to
the original images when the inverse wavelet transformation is applied) are localized uniformly
in a small region of the coefficient space.

Empirical study confirms that wavelet shrinkage implemented by restricting the coefficients of a
Daubechies-4 wavelet transform in a narrow L-shaped region with the corner at the origin in the
wavelet coefficient space of the lithology images, retains the broad lithologic structure present in
the posterior samples. Although this empirical observation appears to be fairly robust for
lithology images, the underlying mathematical reason for this is not entirely clear and is
currently under investigation. Possibly it is because of the somewhat layered structure of the
lithology distribution. Additionally, the information loss is dependent on the choice of the width
of the L-shaped region. A global measure is provided by the cross-correlation between the
compressed and the original lithology image. With the compression factor varying from 8 to 32,
the mean cross-correlation drops from 0.94 to 0.82. Since an information preserving compression
would yield a cross-correlation of 1.0, some information is lost. But, visual observation of
selected test cases do not indicate a significant degradation relative to our application domain.
The illustrations provided in Figure 29 are based on a random sample of 500 selected from a set
of ~10,000 posterior samples of lithology images based on the Savannah River site. The figure
displays the wavelet compressed images along with the original images of 10 randomly chosen
lithology images from the posterior samples. From the bottom up each row represents five
original images and the row immediately above shows the corresponding compressed images.
Note that the visual degradation is minor. The wavelet transform is Daubechies with coefficient
4 implemented by the IDL software. The compression factor is 8. Figure 30 displays histograms
of the three cross-correlation coefficients at lag (0, 0) between the original and the compressed
image pairs based on the 500 samples and three levels of compression. The figures in the panel
viewed from top to bottom correspond to compression factors: 8, 16 and 32. As the compression
factor increases, the mean correlation decreases from 0.94 to 0.82.

Understanding a posterior distribution generally involves some form of density estimation. In
high dimension this is difficult because of the relatively small number of samples available. The
problem is compounded further because of concentration of samples in subspaces. One possible
approach to this problem is based upon clustering and using the cluster center and frequency like
a high-dimensional histogram approximation of the posterior distribution. Since the cluster
centers actually represent a lithologic distribution, they provide a good idea of typical lithologies
present in the posterior support and how likely they are to occur. To enhance the effectiveness of
our density estimation, a successful effort has been made to reduce the dimension of the data
using uniform wavelet shrinkage.
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Figure 30.  Histograms of the three cross-correlation coefficients at lag
(0, 0) between the original and the compressed image pairs based on the
500 samples and three levels of compression. From top to bottom, the
histograms correspond to compression factors of 8, 16 and 32. As the
factor increases, the mean correlation decreases from 0.94 to 0.82.

Figure 29.  Wavelet compressed images corresponding to five lithologic states generated from a
Stochastic Engine simulation based on Savannah River data. (Bottom row) Five original images.
(Top row) The corresponding compressed images. The wavelet transform is Daubechies with
coefficient 4 implemented by the IDL software. The compression factor is 8.
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Needed Performance: Computational Costs and Task Parallelization

For complex spatial problems the main computational cost in the stochastic search algorithm will
be in the time required to solve the forward models. As the number of computational cells
increases, especially as the problem domain is increased from 2D to 3D (Figure 31), the
computational and memory limits of a single workstation can easily be reached. Thus, we must
devise ways to subdivide up the problems into smaller tasks that run on separate CPU’s. There
are several levels of task parallelization possible.

At the coarsest level of task granularity, we take advantage of the fact that the multiple MCMC
chains that are necessary for computing convergence diagnostics and ensuring adequate coverage
of the state space are chains that are statistically and functionally independent. The only
communication involved is the transfer of accepted states from each chain to a central collection
point where it can be post-processed. For a 1 million cell problem the amount of information that
must be transferred is on the order of 1 MB for each state. The time required to send this
information over a LAN is small compared to the time it takes to run the forward model and this
communication can be done asynchronously from the computation. This form of parallelization
has been implemented into our engine for local workstations. In the future, this capability will be
expanded to run jobs on other machines, such as the Teracluster. Note that this form of
parallelization works independently of the type of forward model that is used.

Figure 31.  All engine components now operate in three dimensions.
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At the next lower level of granularity, the forward model computation for each independent
chain can also be parallelized. For 2D electrical resistive tomography there are 10 independent
linear solves required (the ERT code is actually pseudo-3D; the 10 solves correspond to 10
spectral components to model the 3rd dimension). For the 3D ERT forward model, the number
of independent linear solves is equal to the number of borehole electrodes. Each linear solve (or
a fixed number of linear solves) can, therefore, be done on its own workstation. A prototype for
this method of parallelization has recently been implemented on a local workstation cluster.
Performance enhancements to this system and porting to the Teracluster will take place during
the coming year. A single linear solve of a 100×100×100 cell ERT problem is estimated to take
approximately 30 seconds on a 1GHz workstation, using around 600 MB of physical memory.
This size of problem appears to be a rough upper limit on the largest ERT problem that is
feasible with this approach. The two linear solves needed by a flow and transport model would
be done on a separate processor.

Larger problems will require solving each linear system on multiple processors such as multiple
workstations on their own fast network or on the Teracluster 2000 machine. Thus, each chain
runs on its own independent group of processors, and each group is subdivided into nearly
independent subgroups with each subgroup performing a single linear solve (see Figure 32). This
stage of parallelization will be implemented during the coming year.

Figure 32.  Strategies for
parallelization of the engine
software.
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